Structure of Dicarbonyliodo($\boldsymbol{\eta}^{\mathbf{5}}$-pentamethylcyclopentadienyl)iridium(III) Tetrafluoroborate $\left[\mathbf{C p}{ }^{*} \operatorname{Ir}(\mathbf{C O})_{2}{ }^{1}\right] \mathrm{BF}_{4}$

By Frederick W. B. Einstein, Xiaoqian Yan and Derek Sutton
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

(Received 19 November 1990; accepted 19 March 1991)

Abstract

Ir}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)(\mathrm{I})(\mathrm{CO})_{2}\right]\left[\mathrm{BF}_{4}\right], \quad M_{r}=597 \cdot 17\), orthorhombic, $P c a 2_{1}, a=13.035$ (4), $b=10.517$ (3), $c=12.013(4) \AA, \quad V=1646.9 \AA^{3}, \quad Z=4, \quad D_{x}=$ $2.41 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $99.74 \mathrm{~cm}^{-1}, F(000)=1095.75, T=296 \mathrm{~K}, R=0.044$, $w R=0.049$ for 1014 observed reflections. The Ir atom in the cation is coordinated to an η^{5} pentamethylcyclopentadienyl group, two carbonyl groups and an iodine. Selected bond distances and angles are: $\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ centroid $1 \cdot 88$, $\mathrm{Ir}-\mathrm{C}(1)$ 1.89 (3), Ir-C(2) 1.81 (4), Ir-I 2.717 (3) \AA; C(1)-$\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ centroid 126, $\mathrm{C}(2)-\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ centroid 132, $\mathrm{I}-\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ centroid $120, \mathrm{C}(1)-\mathrm{Ir}-\mathrm{C}(2)$ 92 (2), C(1)-Ir--I 90 (2), C(2)-Ir-I 84 (1).

Experimental. Compound isolated from reaction of $\mathrm{Cp}{ }^{*} \operatorname{Re}(\mathrm{CO})_{2} \mathrm{I}_{2}$ and $\mathrm{Cp}{ }^{*} \mathrm{Ir}(\mathrm{CO})_{2}\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ with AgBF_{4} in ethanol; crystals obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (Zhang \& Sutton, 1990). A palegreen crystal $0.39 \times 0.24 \times 0.12 \mathrm{~mm}$ was mounted on a glass fibre. Intensity data were collected at 296 (1) K with an Enraf-Nonius CAD-4F diffractometer using graphite-monochromatized Mo $K \alpha$

Table 1. Positional parameters and $B_{\mathrm{iso}} / B_{\text {eq }}$ values $\left(\AA^{2}\right)$ for $\left[\mathrm{Cp}{ }^{*} \mathrm{Ir}(\mathrm{CO})_{2} \mathrm{I}\right] \mathrm{BF}_{4}$

	x	y	z	$B_{\text {iso }} / B_{\text {eq }}{ }^{\dagger}$
Ir	0.03319 (7)	$0 \cdot 12921$ (9)	0	2.59
I	$0 \cdot 1188$ (3)	0.0189 (3)	$0 \cdot 1822$ (3)	6.41
C(1)	-0.0778 (27)	0.0139 (35)	0.009 (6)	$6 \cdot 1$ (8)
O(1)	-0.1450 (20)	-0.049 (3)	0.024 (3)	7.3 (7)
$\mathrm{C}(2)$	$0 \cdot 1107$ (32)	0.0155 (42)	-0.076 (3)	5.5 (9)
O(2)	0.1582 (24)	-0.040 (3)	-0.138 (3)	7.4 (8)
C(11)	-0.0471 (26)	0.3055 (32)	0.056 (3)	$2 \cdot 8$ (7)
C(12)	0.0537 (28)	$0 \cdot 3198$ (36)	0.075 (3)	$4 \cdot 1$ (8)
C(13)	0.1162 (20)	0.3131 (24)	-0.015 (3)	$3 \cdot 1$ (6)
C(14)	0.0507 (24)	$0 \cdot 3033$ (30)	-0.105 (3)	$2 \cdot 6$ (6)
C(15)	-0.0557 (32)	$0 \cdot 2929$ (40)	-0.060 (4)	2.7 (10)
C(21)	-0.1388 (38)	0.3207 (42)	$0 \cdot 125$ (4)	6.0 (11)
C(22)	0.0987 (26)	0.3523 (31)	0.198 (3)	4.7 (7)
C(23)	0.2321 (24)	0.3356 (27)	-0.020 (3)	4.4 (7)
C(24)	0.0765 (26)	0.3000 (34)	-0.226 (3)	4.6 (7)
C(25)	-0.1483 (31)	0.2948 (35)	-0.133 (3)	$3 \cdot 2$ (8)
$\mathrm{F}(1)$	0.4618 (16)	0.4148 (18)	1.0242 (26)	6.7 (5)
F (2)	0.5226 (20)	0.2298 (24)	0.9615 (20)	7.8 (7)
F(3)	0.6156 (25)	0.3548 (29)	1.0728 (27)	$9 \cdot 1$ (8)
F(4)	0.5956 (20)	0.4077 (24)	0.9024 (22)	$2 \cdot 9$ (7)
B	0.5439 (24)	0.347 (3)	0.986 (3)	2.9 (7)

$\dagger B_{\text {eq }}$ is the mean of the principal axes of the thermal ellipsoid.
radiation. Lattice parameters were determined from 25 reflections ($15 \leq \theta \leq 18^{\circ}$). 1678 independent reflections were measured ($3 \leq 2 \theta \leq 50^{\circ} ; h: 0 \rightarrow 15 ; k$: $0 \rightarrow 12 ; l: 0 \rightarrow 14)$ using $\omega-2 \theta$ scans; 1014 observed reflections $\left[I_{o} \geq 2.5 \sigma\left(I_{o}\right)\right]$; scan range ($1 \cdot 10+$ $0.35 \tan \theta)^{\circ}$; scan speed $0 \cdot 19-5.49^{\circ} \mathrm{min}^{-1}$; intensities of three standards $(0 \overline{4} 2,121,2 \overline{1} \overline{1})$ were measured every 80 min of acquisition time and showed no long term change and had an r.m.s. deviation of $<1.4 \%$; data reduction included intensity scaling, Lorentz and polarization corrections and an analytical absorption correction, ψ-scan checked, transmission $0 \cdot 240-0.545$ (Alcock, 1969). Structure solved by Patterson synthesis, and refined by full-matrix least squares and Fourier synthesis methods. The assumption that the space group is non-centrosymmetric $P c a 2_{1}$ was confirmed by the successful refinement. The positions of some methyl-group H atoms were located in difference Fourier maps $(\sin \theta / \lambda<$ $0 \cdot 3 \AA^{-1}$) and were used to calculate remaining methyl H -atom positions $[d(\mathrm{C}-\mathrm{H})=0.95 \AA$]. Final refinement included anisotropic thermal parameters for Ir and I , and isotropic thermal parameters for

Table 2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Cp} * \operatorname{Ir}(\mathrm{CO})_{2} \mathrm{I}\right] \mathrm{BF}_{4}$

$\mathrm{Ir}-\mathrm{I}$		$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.3$	1.34 (5)
$\mathrm{Ir}-\mathrm{C}(1) \quad 1.89$ (3)		$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.3$	1.35 (5)
$\mathrm{Ir}-\mathrm{C}(2) \quad 1.81$ (4)		$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$.	1.39 (4)
$\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ centroid 1.88		$\mathrm{C}(14)-\mathrm{C}(15) \quad 1$.	1.49 (5)
$\mathrm{Ir}-\mathrm{C}(11) \quad 2.23$ (3)		$\mathrm{C}(15)-\mathrm{C}(11) \quad 1$.	1.41 (6)
$\mathrm{Ir}-\mathrm{C}(12) \quad 2.21$ (4)		$\mathrm{C}(11)-\mathrm{C}(21) \quad 1$.	1.46 (6)
$\mathrm{Ir}-\mathrm{C}(13) \quad 2.22$ (3)		$\mathrm{C}(12)-\mathrm{C}(22) \quad 1$.	1.63 (5)
$\mathrm{Ir}-\mathrm{C}(14) \quad 2.23$ (3)		$\mathrm{C}(13)-\mathrm{C}(23) \quad 1$.	1.53 (4)
$\mathrm{Ir}-\mathrm{C}(15) \quad 2.20$ (4)		$\mathrm{C}(14)-\mathrm{C}(24) \quad 1$.	1.49 (5)
$\mathrm{C}(1)-\mathrm{O}(1) \quad 1 \cdot 11$ (5)		$\mathrm{C}(15)-\mathrm{C}(25) \quad 1$.	1.49 (6)
$\mathrm{C}(2)-\mathrm{O}(2) \quad 1.14$ (5)			
$\mathrm{I}-\mathrm{Ir}-\mathrm{C}(1)$	90 (2)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$) 107 (3)
$\mathrm{I}-\mathrm{Ir}-\mathrm{C}(2)$	84 (1)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(21)$	134 (4)
$\mathrm{C}(1)-\mathrm{Ir}-\mathrm{C}(2)$	92 (2)	$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(21)$	1) 120 (3)
$\mathrm{Ir}-\mathrm{C}(1)-\mathrm{O}(1)$	173 (5)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(22)$) 122 (3)
$\mathrm{Ir}-\mathrm{C}(2)-\mathrm{O}(2)$	168 (4)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(22)$) 121 (3)
$\mathrm{C}(1)-\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ centroid	126	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(23)$) 128 (3)
$\mathrm{C}(2)-\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ centroid	132	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(23)$) 126 (3)
$\mathrm{I}-\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ centroid	120	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(24)$	4) 129 (3)
$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(14)$	106 (3)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(24)$	4) 124 (3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)$	105 (3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(25)$) 123 (4)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	117 (3)	$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(25)$) 130 (4)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	105 (3)		

(C) 1991 International Union of Crystallography
other non-H atoms. H atoms were included in fixed positions in structure factor calculations. Refinement was considered complete when the shift/e.s.d. ratio was less than 0.02 ; 94 parameters varied. Final residuals $R=0.044, w R=0.049$; goodness of fit 1.004 ; quantity minimized $\sum w\left(F_{o}-F_{c}\right)^{2}$, where $w=1$. Highest peak in final electron density map was $3.4(2)$ e \AA^{-3} at a distance $1.01 \AA$ from Ir atom and $\rho_{\min }$ was $-1.3(2)$ e \AA^{-3}. Analytical forms of scattering factors for neutral atoms used (International Tables for X-ray Crystallography, 1974, Vol. IV, Tables 2.2B and 2.3.1.); all non-H-atom scattering factors corrected for real and imaginary components of anomalous dispersion. Inspection of $w \Delta^{2}$ as a function of $\sin \theta / \lambda, F_{o}$ and values of h, k, l showed no unusual features or trends. Positional parameters are listed in Table 1, and bond distances and angles are listed in Table $2 . \dagger$ Programs used were from the NRC VAX Crystal Structure System (Gabe, Le Page, Charland, Lee \& White, 1989) including their version of ORTEP (Johnson, 1965), and were run on a MicroVAX II computer. Fig. 1. shows the cation with the atom-labelling scheme.

Related literature. The structures of the related compounds [Cp $\left.{ }^{*} \mathrm{Ir}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}\right]\left[\mathrm{PF}_{6}\right]$ (Kaner, Kouvetakis \& Mayorga, 1986) and [$\left.\mathrm{Cp}{ }^{*} \operatorname{Ir}(\mathrm{CO})_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)\right]-$ $\left[\mathrm{Re}_{2}(\mathrm{CO})_{6}(\mu-\mathrm{Cl})_{x}\left(\mu-\mathrm{Br}_{3}-x\right)\right]$ (Einstein, Glavina, Pomeroy \& Willis, 1986) have been reported.

[^0]

Fig. 1. View of the cation $\left[\mathrm{Cp} * \operatorname{Ir}(\mathrm{CO})_{2}\right]^{+}$with atom labelling.

This work was supported by NSERC Canada through operating and infrastructure grants to FWBE and DS. We thank Johnson Matthey Co. for the generous loan of iridium trichloride.

References

Alcock, N. W. (1969). In Crystallographic Computing, edited by F. R. Ahmed, p. 271. Copenhagen: Munksgaard.
einstein, F. W. B., Glavina, P. G., Pomeroy, R. K. \& Willis, A. C. (1986). J. Organomet. Chem. 317, 255-265.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kaner, R. B., Kouvetakis, J. \& Mayorga, S. G. (1986). Acta Cryst. C42, 500-501.
Zhang, X. \& Sutton, D. (1990). Unpublished results.

Acta Cryst. (1991). C47, 1978-1980

Structure of \boldsymbol{N}-Ethyl-m-fluorophenylsuccinimide

By Witold Kwiatkowski* and Janina Karolak-Wojciechowska
Institute of General Chemistry, Technical University, 90-924 Lódż, Zwirki 36, Poland

(Received 31 July 1990; accepted 15 January 1991)

Abstract

Ethyl-3-(3-fluorophenyl)-2,5-pyrrolidinedione, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FNO}_{2}, M_{r}=221 \cdot 23$, monoclinic, $P 2_{1} / c$, $a=6.623$ (1),$\quad b=10.810$ (2), $c=15 \cdot 297$ (2) $\AA, \quad \beta=$ $96.82(1)^{\circ}, \quad V=1087.6(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.351 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=1.54178 \AA, \quad \mu=$ $0.84 \mathrm{~mm}^{-1}, F(000)=464$, room temperature, final R $=0.052$ for 1577 observed reflections (of 1969 unique data). The succinimide fragment of the molecule is non-planar and has an envelope

conformation [the deviation of Cl from the plane $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$ is -0.096 (2) \AA and the dihedral angle between planes $\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$ is $\left.5 \cdot 8(2)^{\circ}\right]$. The phenyl ring is planar. The angle between the best planes of the five-membered ring and the phenyl ring is $87.1(1)^{\circ}$.

Experimental. The title compound recrystallized from ethanol and gave colourless crystals. Crystal
© 1991 International Union of Crystallography

[^0]: \dagger Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54100 (8 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

